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The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques

that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-

integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic

field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary

surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is

constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selec-

tion of QFM surfaces is constructed that simplifies the description of the magnetic field, so that flux

surfaces become “straight” and islands become “square.” VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4897390]

I. INTRODUCTION

The study of dynamical systems is greatly facilitated by

a coordinate framework with coordinate surfaces that coin-

cide with structures that are invariants of the dynamical flow.

Integrable Hamiltonian systems, by definition, possess a con-

tinuous family of invariant action surfaces, and action-angle

coordinates may be constructed.1 In these coordinates, the

dynamics becomes trivial.

Non-integrable Hamiltonian systems, by definition, do

not. Nevertheless, action-angle-like coordinates can still be

constructed that simplify the description of the dynamics

where it is possible to do so. After an integrable system is

generally perturbed, the Poincar�e-Birkhoff theorem,2–4 the

Aubry-Mather theorem,5,6 and the KAM theorem,2–4 named

after Kolmogorov,7 Arnold,8 and Moser,9 show that there are

important, “regular” structures that remain invariant under

the perturbed dynamics. Coordinates adapted to a selection

of these invariant sets, which we call chaotic coordinates,

provide substantial advantages: the regular motion becomes

straight, by which it is meant that the generalized position

coordinate increases linearly against the time coordinate

under the dynamical flow and the generalized momentum

coordinate is constant. The irregular motion is bounded by,

and dissected by, coordinate surfaces that coincide with

surfaces of locally minimal flux.

The magnetic fields used in tokamaks, such as the

ITER10 experiment currently under construction in France,

and stellarators and heliotrons, such as the W7X11 experi-

ment being built in Germany, are analogous to 1 1
2
-dimen-

sional Hamiltonian systems; so the above-mentioned

theorems of Hamiltonian mechanics are directly relevant to

the study of magnetically confined plasmas. In the magnetic-

confinement community, action-angle coordinates are called

“straight-fieldline” coordinates.

To illustrate the construction of chaotic coordinates for

an experimentally relevant magnetic field, this paper will

study the magnetic field in the Large Helical Device (LHD),

a device of the heliotron class in operation in Japan.12

Idealized tokamaks are axisymmetric and thus, by

Noether’s theorem,1 have integrable magnetic fields.

Stellarators and heliotrons are designed so that the magnetic

fields are as close-to-integrable as is possible, and methods

for eliminating the magnetic islands that destroy integrability

have been developed;13,14 however, small imperfections,

plasma instabilities, and/or intentionally applied error

fields15 in the tokamak class, and the inherently three-

dimensional nature of stellarators and heliotrons, destroy

integrability.

To generalize the construction of straight-fieldline coor-

dinates to arbitrarily perturbed magnetic fields, we generalize

the construction of invariant action surfaces to almost-invari-

ant, quadratic-flux-minimizing (QFM) surfaces introduced

by Dewar et al.16 The construction of QFM surfaces enabled

the “island-healing” technique17 used in the design of the

National Compact Stellarator Experiment.18

In Sec. II, we recall the formalism of Lagrangian varia-

tional calculus for constructing magnetic fieldlines as

extrema of the action integral. The extension of this theory

leading to the definition of the quadratic-flux functional, the

derivation of the Euler-Lagrange equations for extremal

surfaces, and the introduction of the pseudo magnetic field is

given in Sec. II A, in what is, hopefully, a more concise and

transparent fashion than that given previously.19

In earlier work,14,17 periodic QFM surfaces were con-

structed by finding families of periodic fieldlines of the

pseudo field by fieldline integration. In Sec. III A, we intro-

duce the pseudo tangent map that makes this algorithm more

efficient. An alternative numerical construction is introduced

in Sec. III B that allows high-order pseudo fieldlines to be

constructed by finding constrained extrema of the action

integral.

A definition of “chaotic coordinates” is given in Sec. IV.

These coordinates are adapted to the invariant structures of

non-integrable fields, namely, the periodic orbits and the

irrational KAM surfaces and cantori, which can be closelya)Electronic mail: shudson@pppl.gov

1070-664X/2014/21(10)/102505/14/$30.00 VC 2014 AIP Publishing LLC21, 102505-1

PHYSICS OF PLASMAS 21, 102505 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.35.1.205 On: Tue, 14 Oct 2014 13:22:51

http://dx.doi.org/10.1063/1.4897390
http://dx.doi.org/10.1063/1.4897390
mailto:shudson@pppl.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4897390&domain=pdf&date_stamp=2014-10-14


approximated by periodic orbits, and are based on a selection

of rational QFM surfaces. A practical definition of the poloi-

dal angle is introduced, so that the pseudo fieldlines become

straight. A hierarchy of chaotic coordinates can be con-

structed: the consequences of choosing different rational

QFM surfaces that serve as the coordinate framework are

discussed in Sec. IV A. How the construction of QFM surfa-

ces allows an approximation to the island separatrices to be

determined is described in Sec. IV B, and Mather’s differ-

ence-in-action20 is reviewed in Sec. IV C.

In Sec. V, we describe the discretization of the action in-

tegral with an arbitrary vector potential (with a convenient

choice of gauge, the Appendix) using a piecewise-linear,

piecewise-constant representation of an arbitrary, trial curve.

This provides a particularly efficient numerical method as (i)

the required integrals can be calculated analytically, so that

the action integral becomes an analytic function of the inde-

pendent degrees-of-freedom that represent the trial curve;

and (ii) the Hessian matrix of second partial derivatives is

tridiagonal, Sec. V A, and thus is simple to invert. The calcu-

lation of Greene’s residue21 using the action formalism22 is

generalized for an arbitrary magnetic field, Sec. V B.

We present some example calculations for LHD in Sec.

VI. First, we construct an example of “low-resolution” chaotic

coordinates, Sec. VI A, and use these coordinates to construct

a selection of high-order periodic orbits that approximate irra-

tional KAM surfaces and cantori. An algorithm based on

Greene’s residue criterion is employed to identify the last

closed magnetic surface, which following Greene et al.23 we

hereafter call the boundary surface. Realizing that the cantori

will form effective barriers to transport in non-ideal plasmas,

as discussed in Sec. VI B, the strength of a hierarchy of partial

barriers is quantified by computing the flux Farey tree.

Finally, in Sec. VI C, “high-resolution” chaotic coordinates

are illustrated, for which more of the geometrical complexity

of the magnetic fieldline flow is incorporated directly into the

coordinates, so that the flux surfaces become “straight” and

the islands become “square.”

II. INVARIANT CURVES AND ALMOST-INVARIANT
SURFACES

For a given magnetic field, B � r� A, where A is a

suitable vector potential, the magnetic-fieldline action, S½C�,
is the line integral24

S½C� �
þ
C
A � dl ; (1)

where dl is an infinitesimal line segment parallel to an arbi-

trary trial curve, C. In toroidal coordinates, ðq; h; fÞ, a trial

curve may be described by h � hðfÞ and q � qðfÞ; where q
is a radial label, h is a poloidal angle, and the toroidal angle,

f, is used to parametrize position along the curve. The coor-

dinates may be defined via the inverse transformation, e.g.,

R � Rðq; h; fÞ; / � f and Z � Zðq; h; fÞ, where position is

x � R cos / iþ R sin / jþ Z k.

Magnetic fieldlines are those particular curves for which

the action is stationary. The first-order variation in S allow-

ing for arbitrary variations dqðfÞ and dhðfÞ is

dS ¼
ð
C
df dh

dS

dh
þ dq

dS

dq

� �
; (2)

where the Frech�et derivatives are

dS

dh
� ffiffiffi

g
p

Bq � _q
ffiffiffi
g
p

Bf; (3)

dS

dq
� _h

ffiffiffi
g
p

Bf � ffiffiffi
g
p

Bh; (4)

and the “dot” denotes the total derivative with respect to f.

The equations describing a fieldline are obtained by setting

each of the Frech�et derivatives to zero.

To define a unique fieldline, it is necessary to provide

suitable constraints. The standard approach1 is to specify the

endpoints of a finite-length curve. Another possibility is to

enforce periodicity: periodic curves are, in a practical sense,

of finite length. Trial curves are (p, q)-periodic if hðfþ
2pqÞ ¼ hðfÞ þ 2pp and qðfþ 2pqÞ ¼ qðfÞ, where p and q
are relatively prime integers. A family of angle-curves is

described by haðfÞ � aþ p f=qþ ~haðfÞ, where ~hað0Þ
¼ ~hað2pqÞ ¼ 0, and a will be used as a fieldline label.

A. Extremizing surfaces and the pseudo field

The construction of extremal curves of the action inte-

gral can be generalized to the construction of extremal surfa-
ces of the quadratic-flux integral. Consider a single-valued,

trial surface q � Pðh; fÞ. Together with a family of periodic

angle-curves, this defines a family of periodic radial-curves

via qaðfÞ � PðhaðfÞ; fÞ, which in turn locally defines the

pseudo radial dynamics

_q � @hP _h þ @fP: (5)

The tangent vector to any set of curves in space locally

defines a vector field; so the pseudo dynamics defines a

pseudo-field, B� � _q Bf eq þ _h Bfeh þ Bf ef, on the trial sur-

face that has the haðfÞ and qaðfÞ as integral curves.

There is sufficient freedom to generally assume that

each h � haðfÞ satisfies the true angle-dynamics, i.e., we

may choose angle-curves that satisfy

_h �
ffiffiffi
g
p

Bhffiffiffi
g
p

Bf
: (6)

This is equivalent to enforcing the constraint dS=dq ¼ 0.

We cannot generally also force the constraint that

dS=dh ¼ 0 along each trial curve on the trial surface. This

would be tantamount to insisting that each trial curve is a

periodic fieldline; but, from the theory of perturbed

Hamiltonian dynamical systems,4 it is well known that

rational invariant surfaces do not generally exist and the

action-gradient, � � dS=dh, is generally non-zero.

Using the true angle-dynamics and allowing for arbi-

trary radial dynamics, so that Eq. (3) becomes

_q Bf ¼ Bq � �= ffiffiffi
g
p

, the pseudo-field defined by Eq. (5) is

B� ¼ B� eq �=
ffiffiffi
g
p

; (7)
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where the action-gradient implied by a given trial surface is

�=
ffiffiffi
g
p ¼ Bq � @hPBh � @fB

f.

Even though it is not generally possible to construct trial

surfaces so that dS=dh ¼ 0 along each trial curve, we can

construct surfaces that minimize the quadratic-flux func-

tional16 defined as

u2 ¼
1

2

ð ð
dhdf

dS

dh

� �2

: (8)

Allowing the trial surface to vary, dPðh; fÞ, the first order

variation in u2 is

du2 ¼
ð ð

dhdf�½dð ffiffiffigp BqÞ � d _q
ffiffiffi
g
p

Bf � _q dð ffiffiffigp BfÞ�:

From Eq. (5) and using Eq. (6)

d _q
ffiffiffi
g
p

Bf ¼ @hdP
ffiffiffi
g
p

Bh þ @fdP
ffiffiffi
g
p

Bf

þ@hP @qð
ffiffiffi
g
p

BhÞ dP� @hP _h @qð
ffiffiffi
g
p

BfÞ dP:

Integrating by parts

�
ð ð

dhdf � @bdP
ffiffiffi
g
p

Bb ¼
ð ð

dhdfdP dbð
ffiffiffi
g
p

Bb�Þ;

and recognizing that the total derivative with respect to the

angles b ¼ h; f must accommodate the dependency

q � Pðh; fÞ, so that

dbð
ffiffiffi
g
p

Bb�Þ ¼ @qð
ffiffiffi
g
p

BbÞ @bP � þ @bð
ffiffiffi
g
p

BbÞ � þ ffiffiffi
g
p

Bb @b�;

and using r � B ¼ 0, the first-order variation in u2 is

du2 ¼
ð ð

dhdf dP ð ffiffiffigp Bh@h þ
ffiffiffi
g
p

Bf@fÞ�: (9)

The Euler-Lagrange equation for extremizing surfaces is that

the action-gradient is constant along the angle-dynamics,

ðBh@h þ Bf@fÞ� ¼ 0. The angle-dynamics, together with

q � Pðh; fÞ, defines the pseudo-field, and so � is constant

along the fieldlines of B� .

We now describe two numerical algorithms for con-

structing QFM surfaces as families of periodic, pseudo-

fieldlines; the first is based on fieldline integration, and the

second is based on a constrained-area, action-minimizing,

variational principle.

III. NUMERICAL CONSTRUCTION

The true fieldline flow induced by a given field, B, pro-

duces a mapping, Mq, from an initial point, ðh0; q0Þ, on the

Poincar�e section f ¼ 0 around q toroidal periods to arrive at

ðhq; qqÞ

hq

qq

� �
¼ Mq h0

q0

� �
: (10)

Periodic fieldlines are fixed points of Mq, with the under-

standing that 2pp is to be subtracted from hq.

In the integrable case, a continuous family of periodic

fieldlines exists, each of which may be labeled by a and

which may be found by a one-dimensional search in q for

each given h0. In the general, non-integrable case, typically

only two distinct periodic fieldlines exist for a given perio-

dicity, the so-called Poincar�e-Birkhoff periodic orbits,2,22

which are located say at h ¼ aX and h ¼ aO.

The behavior of fieldlines near a given fieldline is

described by the tangent map

dhq

dqq

� �
¼ rMq � dh0

dq0

� �
; (11)

which may be determined by fieldline integration

d

df
rMq ¼ @h

_h; @q
_h

@h _q; @q _q

 !
� rMq; (12)

from the initial condition rMq ¼ the 2� 2 identity matrix.

If the eigenvalues of rMq are complex conjugates, the tan-

gent fieldlines will display elliptical motion and that periodic

fieldline is considered “stable.” If the eigenvalues are real

reciprocals, the tangent motion will either exponentially

grow or decay and the periodic fieldline is “unstable.”

It is convenient at this point to recall Greene’s residue

criterion:21,25 the existence of an invariant surface with irra-

tional rotational-transform, i-, is related to the stability of per-

iodic fieldlines that “best approximate” the given irrational.

The rational convergents,26 (pi, qi), of a given irrational, i-,
form a sequence such that pi=qi ! i- as i!1, and jpi=qi �
i-j < jp=q� i-j for all q < qi. Greene introduced a quantity

called the residue

Rðp; qÞ ¼ ð2� k� k�1Þ=4; (13)

where k and k�1 are the eigenvalues of rMq. If the residues

of the convergents approach zero, Rðpi; qiÞ ! 0 as i!1,

then the irrational surface will exist. If, however, the magni-

tude of the residues become large, jRðpi; qiÞj ! 1, then the

surface has been destroyed by island-overlap27 and the ensu-

ing chaos. The critical value is 0.25. If Rðpi; qiÞ ! 0:25, then

the irrational surface is on the “edge of destruction” and is

continuous but no longer smooth.

A. Pseudo-fieldline integration

Numerically, constructing QFM surfaces is very similar

to finding periodic fieldlines. A (p, q)-QFM surface is a fam-

ily of (p, q)-periodic fieldlines of the pseudo-field, B� , along

each of which the action-gradient is constant, i.e., � ¼ �ðaÞ.
The task of finding these periodic pseudo fieldlines is equiva-

lent to finding fixed points of the q-th return pseudo-map,

which is constructed by integrating along the pseudo-field

from an initial point, ðh0; q0Þ, on the Poincar�e section, e.g.,

f ¼ 0, around q toroidal periods to arrive at ðhq; qqÞ. Given

that � is constant along the pseudo-field but that the particu-

lar numerical value of � is not yet known, it is required to

find the particular pair ð�;q0Þ that gives a periodic, integral

curve of B� at the prescribed angle, h0 ¼ a. The q-th return

pseudo-map, Pq, is defined by
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hq

qq

� �
¼ Pq �

q0

� �
; (14)

where the dependence on h0 is suppressed.

The q-th return, pseudo tangent-map, rPq, is defined by

dhq

dqq

� �
¼ rPq � d�

dq0

� �
; (15)

and can also be determined by pseudo fieldline integration

over f 2 ½0; 2pq� by

d

df
rPq ¼ @h

_h @q
_h

@h _q @q _q

 !
� rPq þ 0 0

1=
ffiffiffi
g
p

Bf 0

� �
;

with the initial condition

rPq ¼ 0 0

0 1

� �
: (16)

The pseudo tangent map allows an efficient Newton iterative

algorithm for finding fixed points: a correction, ðd�; dqÞ, to

an initial guess for ð�; qÞ is determined by requiring the

pseudo fieldline be periodic

hq

qq

� �
þrPq � d�

dq0

� �
¼ h0 þ 2pp

q0 þ dq

� �
: (17)

For the integrable case, for which there is a true periodic

orbit for every value of the poloidal angle, the iterative solu-

tion will yield �ðaÞ ¼ 0 for all a, and the pseudo field

reduces to the true field; and similarly for the non-integrable

case: where true periodic fieldlines exist, e.g., at aX and a0,

the solution yields �ðaXÞ ¼ 0 and �ðaOÞ ¼ 0.

At all angle locations where a periodic true fieldline

does not exist, a periodic pseudo fieldline can still be con-

structed by suitably choosing �. Intuitively, we may think of

�=
ffiffiffi
g
p

as the amount of radial field that must be subtracted

from the true field to “cancel” the resonant effect of the per-

turbation, and by so doing create a rational “pseudo” surface

as a family of rational pseudo fieldlines.

B. Constrained, extremal curves

Another construction of pseudo fieldlines is obtained by

realizing that curves that extremize the action subject to a

constraint on the “area”

a �
ðþpq

�pq

hðfÞ df; (18)

are also integral curves of B� with constant �. The

constrained-area, action integral is

F �
þ
C
A � dl� �

þ
C
hrf � dl� a

� �
; (19)

where formally � is a Lagrange multiplier and a is the

required numerical value of the area. Recalling that the

change in
Ð

v � dl due to changes, dl, in only the curve is

given by
Ð
ðr � vÞ � dl � dl, the first order variation in F is

dF ¼
ð
C
dl� ðB� �rh�rfÞ � dl ; (20)

from which we see that dF ¼ 0 for arbitrary dl along the in-

tegral curves of B� � B� �rh�rf. On using the coordi-

nate identity rh�rf ¼ eq=
ffiffiffi
g
p

,28 this is identical to the

pseudo-field defined in Eq. (7).

Both the pseudo fieldline integration method, which

seeks fixed points of the q-th return pseudo-map defined in

Eq. (14), and the constrained-area, action-extremizing

method, which seeks extrema of Eq. (19), will be used in the

following to construct the periodic, pseudo fieldlines that

comprise the QFM surfaces.

The pseudo fieldline integration method is simpler: all that

is required is the magnetic field, B, and suitable toroidal coordi-

nates, ðq; h; fÞ, so that eq �
ffiffiffi
g
p rh�rf may be defined.

The constrained-area, action-extremizing method is

computationally faster and does not depend on integrating

the ordinary differential equations that define the pseudo-

field. This is a clear advantage for finding high-order (i.e.,

large q) periodic fieldlines and pseudo fieldlines in regions

of chaos that would otherwise be swamped by the exponen-

tial increase of numerical error associated with finite

Lyapunov exponents; however, this method requires an

appropriate discretization of an arbitrary, periodic trial curve

and the computation of the derivatives of the discretized

action integral. How to construct these quantities will be

described in Sec. V.

IV. CHAOTIC COORDINATES

The quadratic-flux functional depends on the action-

gradient, which is not coordinate independent: the quantity

dS=dh depends on the choice of angle, h, defined implicitly

by the coordinate transformation and which, thus far, has

been left as arbitrary. The arbitrariness in the choice of poloi-

dal angle can be removed by the following convention: QFM

surfaces are surfaces that minimize the quadratic-flux func-

tional or equivalently comprised extremal curves of the

constrained-area action functional, where the angle h is such

that the pseudo fieldlines are straight. Such an angle can be

constructed iteratively.

Given a collection of N QFM surfaces, with different

periodicities e.g., (pi, qi) with i ¼ 1;N, that form a radial

framework, and that have been constructed using an initial,

arbitrary poloidal angle, it is possible to construct on each

surface a new angle, �h, such that each pseudo curve is

“straight,” i.e., �h ¼ aþ p f=q. A Fourier decomposition of

the cylindrical coordinates of each surface using the ð�h; fÞ as

angle coordinates, and a smooth interpolation of the Fourier

harmonics between the surfaces, provides a global coordi-

nate transformation, R � Rðw; �h; fÞ and Z � Zðw; �h; fÞ,
where we have chosen to keep the usual, cylindrical toroidal

angle, / � f, but this could be generalized to obtain a

Boozer-like29 toroidal angle, for example. It is convenient to

label each pseudo-surface with the enclosed toroidal flux,

w � ðtoroidal fluxÞ=2p, and for the new fieldline-label, a,
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we chose
Ð
ðaþ p f=qÞ df ¼

Ð
hðfÞ df. We call the resulting

coordinate framework chaotic coordinates. In chaotic coor-

dinates, the Poincar�e-Birkhoff orbits with the selected perio-

dicities (pi, qi) are straight.

A. A hierarchy of chaotic coordinates

There is some freedom in the construction of chaotic

coordinates, and a hierarchy of chaotic coordinates can be

constructed that successively “straighten” more and more of

the invariant, rational sets and thereby also the invariant,

irrational sets. Practically, we must choose a finite selection

of QFM surfaces that form the coordinate framework, and

the selection will impact the resulting coordinates: the

Poincar�e-Birkhoff orbits with periodicities that correspond to

the selected (pi, qi) are guaranteed to be straight, and those

that do not are not.

The low-order rational QFM surfaces that pass through

the low order islands will usually be quite smooth, and by

selecting these surfaces as the coordinate framework we may

construct coordinates that approximate straight-fieldline

coordinates of some nearby, integrable field.

By taking suitable limits, the irrational, invariant sets

guaranteed by the KAM theorem can be used as coordinate

surfaces, and coordinate surfaces that “fill-in-the-gaps” in

the cantori can be constructed.

As the size of the magnetic islands and the degree-of-chaos

increases, the invariant sets become increasingly geometrically

deformed, particularly the invariant sets that lie just outside the

separatrices of large, low-order island chains. Theoretically,

given that the rationals for a countable set, we may construct

QFM surfaces for all rational periodicities present in the mag-

netic configuration; however, doing so would effectively be an

attempt to construct straight fieldline coordinates globally, and

the resulting hierarchy of chaotic coordinates will approach a

non-smooth limit as the number of included QFM surfaces is

increased if the magnetic field is chaotic.

These ideas will be described and illustrated in more

detail in the following. Hereafter, the coordinates ðw; h; fÞ
shall represent the chaotic coordinates for which the pseudo

fieldlines for the selected periodicities are straight and lie on

coordinate surfaces. To be formally precise, we should write

ðw; h; fÞp;q, where the subscript indicates the set of periodici-

ties, (pi, qi), of the QFM surfaces that have been chosen as

the coordinate framework; but this notation is clumsy, and in

Sec. VI, where chaotic coordinates are shown for LHD, the

selection of the (pi, qi) should be clear by context.

Before describing how the action integral may be discre-

tized, we make some comments regarding the representation

of the magnetic field, how to estimate the separatrix of an

island chain, and how to compute the magnetic fieldline flux

across a rational surface.

B. Island widths

Any magnetic field may be written

B ¼ rq�rh�rvðq; h; fÞ � rf; (21)

where here the angle h is arbitrary. The decomposition

vðq; h; fÞ ¼ v0ðqÞ þ ~v1ðq; h; fÞ, where v0ðqÞ is the average

of vðq; h; fÞ on the surface q � const: for example, splits B

into an integrable field plus a “perturbation” field. The

ðq; h; fÞ coordinates and this decomposition are not unique,

and the perturbation field may not be small.

Coordinates based on QFM surfaces offer certain advan-

tages. The pseudo-field is formally only defined on the QFM

surfaces; however, we may imagine that there is a globally

defined integrable field, B0 � rw�rh�rv0ðwÞ � rf
that coincides with B� where B� is defined. Given that the

periodic, pseudo fieldlines coincide with periodic, true field-

lines where the latter exist, from which it follows that the

QFM surfaces reduce to rational flux surfaces where the lat-

ter exist; and that � measures the difference between the true

field and the pseudo-field, and that it is
Ð Ð

dhdf �2= 2 that is

minimized (formally, extremized) at the selected, resonant
surfaces, which is where the effects of perturbations are the

greatest; then, the B0 so defined is the “nearest” integrable

field to the given magnetic field.

It is not the case that all the invariant surfaces of the

true field, B, will necessarily coincide with invariant surfaces

of B0, just as it is not the case that the invariant, KAM surfa-

ces of a perturbed field will coincide with the invariant surfa-

ces of the unperturbed field. However, if in the construction

of the ðw; h; fÞ coordinates a selection of rational pseudo

surfaces with periodicities (pi, qi) that closely approximate a

given irrational was chosen, then the pseudo surfaces will

closely approximate that KAM surface, if it exists.

Specializing Eq. (21) to B ¼ rw�rh�rv�rf,

with _w ¼ 0 along the pseudo curves, then the expression for

the action gradient given in Eq. (3) implies that

� ¼ ffiffiffi
g
p

Bw ¼ �@h~v1, and the size of the magnetic island that

forms at the rational surface is determined by �.

The generating function4,30 Fð�w; h; fÞ � ðh� n f=mÞ �w
generates the canonical transformation to the rotating frame

w ¼ �w and �h ¼ h� n f=m. The single-resonance Hamiltonian,

vðw; h; fÞ � v0ðwÞ þ vn;m cosðmh� nfÞ, is transformed

according to �v � vþ @fF to give

�v ¼ v0ðwÞ þ vn;m cosðm�hÞ � n w=m:

Expanding about the rational surface, i-ðwn=mÞ � v00ðwn=mÞ
¼ n=m, we obtain

�v ¼ 1

2
i-0dw2 þ vn;m cos m�hð Þ; (22)

where the constant terms, v0ðwn=mÞ and nwn=m=m have been

dropped. The island separatrix is defined by �v ¼ E ¼ vn;m,

which gives

dw ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vn;m½1� cosðm�hÞ�=i-0

q
: (23)

C. Mather’s difference-in-action

The magnetic flux through any surface is given by the

integral
Ð

B � ds. If the surface is closed then the surface inte-

gral may be transformed into a volume integral
Ð
r � B dv,

which is identically zero for divergence-free magnetic fields.

The surface integral can be converted to a line integral,Þ
A � dl, where dl is an infinitesimal line segment on the
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boundary. The “upward” or “outward” flux across any sur-

face passing through the islands, i.e., with boundary coincid-

ing with the true periodic fieldlines, is given by the

difference-in-action

DWp=q �
ð

O

A � dl�
ð

X

A � dl; (24)

introduced by Mather,2,20 where the curve denoted by X rep-

resents the action-minimizing periodic fieldline, which is

unstable, and that by O the action-minimax fieldline, which

is usually stable for small perturbations from integrability.

Computing the difference-in-action allows20 another method

for determining the existence of invariant, irrational KAM

surfaces. If the limit DWi- � DWpi=qi
as i!1 is zero, where

(pi, qi) are the convergents of i-, then that irrational surface

has no upward flux, i.e., the KAM surface exists. If

DWi- 6¼ 0, then DWi- is the flux across the remnant cantorus,

and DWi- quantifies the importance of each cantorus as a par-

tial barrier.

The construction of chaotic coordinates, along with a

determination of Greene’s residue, the estimate of the island

separatrix, and computing Mather’s difference-in-action,

enables a sophisticated analysis of general magnetic fields.

The following section, Sec. V, describes the discretization of

the action integral and is largely technical. Readers primarily

interested in the application to LHD can proceed to Sec. VI.

V. DISCRETIZED ACTION INTEGRAL

We now implement the action extremizing method. A

discrete, piecewise-constant, piecewise-linear representation

of a trial curve is employed.31 For f 2 ½fi�1; fi�

qðfÞ ¼ qi;

hðfÞ ¼ hi�1 þ _hðf� fi�1Þ;
(25)

where _h � ðhi � hi�1Þ=Df is constant in ðfi�1; fiÞ, and Df �
2p=N where N is the number of line segments per 2p.

Hereafter, to reduce notational clutter, we choose N¼ 1. The

curve is constrained to be (p, q) periodic by setting

hq � h0 þ 2p p. The fqi : i ¼ 1; qg and the fhi : i ¼
0; q� 1g are the 2q� 1 independent degrees-of-freedom

that describe an arbitrary, periodic trial curve.

An arbitrary vector potential may be written

A ¼ Ahðq; h; fÞrhþ Afðq; h; fÞrf; (26)

by a suitable choice of gauge (described in the Appendix). A

Fourier representation will be used, so that for so-called stel-

larator-symmetric32 fields we may write

Ahðq; h; fÞ ¼
X

j
Ah;jðqÞ cosðmjh� njfÞ;

Afðq; h; fÞ ¼
X

j
Af;jðqÞ cosðmjh� njfÞ:

(27)

We restrict attention to stellarator-symmetric fields primarily

for expedience; the following analysis is completely general,

but stellarator-symmetric fields do provide some simplifica-

tions: the line h ¼ 0; f ¼ 0 is a symmetry line, and the

existence of symmetry lines makes finding the true periodic

orbits particularly easy.

The action integral can be evaluated piecewise,

S �
P

iSi, where

Si �
ðfi

fi�1

df A � dl

df
¼
ðfi

fi�1

df
X

j
Si;j; (28)

where Si;j � Ai;j cosðmjh� njfÞ, and Ai;jðq; hi�1; hiÞ �
Ah;jðqÞ _h þAf;jðqÞ. An advantage of the piecewise-linear dis-

cretization for hðfÞ is that the integral of the trigonometric

term can be evaluated analytically

Ci;jðhi�1; hiÞ �
ðfi

fi�1

df cosðmjh� njfÞ

¼
sin mjhi � njfi

� �
� sin mjhi�1 � njfi�1

� �
mj

_h � nj

:

(29)

Care must be taken when d � mj
_h � nj is small.

Writing �a � mj
�h � nj

�f, where �h � ðhi�1 þ hiÞ=2 and
�f � ðfi�1 þ fiÞ=2, the integral is well approximated by

Ci;jðhi�1; hiÞ ¼ cos �aDf½1� d2Df2=24þOðd4Þ�. For brevity,

we shall assume that Eq. (29) is valid.

A. Newton method

To find extremal curves, it is required to find extrema of

S �
P

i;jSi;jðqi; hi�1; hiÞ. The first derivatives are

@Si;j

@qi

¼ A0jCi;j; (30)

@Si;j

@hi�1

¼ �
Ah;j qið Þ

Df
Ci;j �Aj qið Þ

m cos ai�1;j

mj
_h � nj

þ Si;j

mj
_h � nj

m

Df
;

(31)

@Si;j

@hi
¼ þ

Ah;j qið Þ
Df

Ci;j þAj qið Þ
m cos ai;j

mj
_h � nj

� Si;j

mj
_h � nj

m

Df
;

(32)

where ai;j � mjhi � njfi and the prime denotes derivative

with respect to q. A Newton method can be used to find

extrema: given a suitable initial guess for the fqig and the

fhig, an iterative scheme that inverts the Hessian, i.e., the

matrix of second partial derivatives, can be used.

Treating all of the fqig, the fhig, and the Lagrange multi-

plier, �, as independent degrees-of-freedom requires inverting a

matrix of size �2q� 2q, which requires Oð2qÞ3 operations,

and this becomes computationally infeasible for large q.

Fortunately, the piecewise-constant piecewise-linear represen-

tation affords some further important simplifications.

The equation @S=@qi ¼ 0 reduces to @Si=@qi ¼ 0. In

each region, ðfi�1; fiÞ; qi may be determined independently.

Given hi�1 and hi, we solve

@Si qi; hi�1; hið Þ
@qi

¼ 0; (33)

for qi. Generally this must be solved numerically, but a one-

dimensional root finding algorithm that exploits the second
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derivative information, @2Si=@q2
i , can rapidly solve this to

machine precision. Inverting this equation for q, given _h, h,
and f, is always possible if the system has shear, _h

0 6¼ 0.

Hereafter, qi is to be considered a function of hi�1 and hi,

i.e., qi ¼ qiðhi�1; hiÞ, and the fhi : i ¼ 0; q� 1g alone com-

pletely describe the trial curve.

Extremal curves satisfy @S=@hi ¼ 0, where

@S

@hi
¼ @2Si qi; hi�1; hið Þ þ @1Siþ1 qi; hi; hiþ1ð Þ; (34)

and @1Siðqi; hi�1; hiÞ and @2Siðqi; hi�1; hiÞ are given by

@1Si ¼
@Si

@hi�1

þ @Si

@qi

@qi

@hi�1

;

@2Si ¼
@Si

@hi
þ @Si

@qi

@qi

@hi
;

(35)

where

@qi

@h
¼ � @2Si

@h@qi

 !
@2Si

@q2
i

 !�1

: (36)

The equation of motion, @2Si þ @2Siþ1 ¼ 0 given in

Eq. (34), has a form that may be familiar: if we use a

model action with a “kinetic” term and a periodic potential,

Si � 1
2
ðhi � hi�1Þ2 þ k cos hi and employ the “velocity,”

ri � hi � hi�1, as the radial variable, then @2Si þ @2Siþ1 ¼ 0

becomes riþ1 ¼ ri � k sin hi and hiþ1 ¼ hi þ riþ1, which is

widely used standard-map.2

Eliminating the qi as degrees-of-freedom results in the

action integral depending only on the hi, and the piecewise

linear discretization results in the Hessian being cyclic-

tridiagonal, which can be inverted in OðqÞ operations. If an

additional constraint can be imposed, e.g., choosing h0 ¼ 0

to find the periodic fieldlines that lie on the symmetry line,

then an additional degree-of-freedom can be removed and

the Hessian becomes tridiagonal.

We have implemented a Newton method to solve the

equations @S=@hi ¼ 0, for which it is required to compute the

second-derivatives of the action integral. The total derivative of

a function Sðh; qÞ with respect to h, where q satisfies

Fðh; qÞ ¼ 0, with respect to h is given by the chain rule,

dhS � Sh þ dhqSq, where dhS denotes the total derivative of S,

and Sh denotes the partial derivative of S with respect to h with

q held constant, and vice-versa for Sq. The derivative of q with

respect to h is determined by requiring that Fðh; qÞ ¼ 0

remains satisfied as h changes, Fhdhþ Fqdq ¼ 0. The second

derivative of S is d2
hhS ¼ ðShh þ dhqShqÞ þ d2

hhqSq þ dhq
ðSqh þ dhqSqqÞ, where the second derivative of q is

d2q

dh2
¼ � Fhh þ dhqFhqð Þ � dhq Fqh þ dhqFqqð Þ

Fq
:

The equation defining periodic pseudo fieldlines is

simply @S=@hi ¼ �, where � is a constant, i.e., � does not

depend on i. If � is known, then a Newton algorithm that

treats the hi as the only degrees-of-freedom is sufficient.

This method was used (using a restricted choice of vector

potential, so that q ¼ _h and inverting Eq. (33) became triv-

ial) to locate the high-order, true periodic fieldlines (for

which �¼ 0) that approximate cantori.31 However, for locat-

ing pseudo fieldlines, � is generally not known apriori.

To be consistent with the constrained-area, action-

extremizing analysis, � is a Lagrange multiplier and should

be treated as an independent degree-of-freedom. This com-

plicates the numerics because the Hessian loses the tridiago-

nal structure. It is instead preferable to split the iterative

method so that it is similar to the algorithm described in

Sec. III A. First, h0 � a is assumed to be given. Second, a

guess for � is provided. Third, a Newton correction,

fdhi : i ¼ 1; q� 1g, to the remaining degrees-of-freedom in

trial curve is constructed by solving rDðhÞ � dh ¼ �DðhÞ,
where rDi;j � @2F=@hi@hj is the Hessian and Di � @S=@hi

is the gradient of the constrained-area action integral. With

neither h0 nor � considered as degrees of freedom, the

Hessian is tridiagonal. Fourth, � is updated to satisfy

� ¼ h@2Si þ @1Siþ1i, where h…i denotes the average along

the trial curve. The iterations are terminated when h@2Si

þ @1Siþ1 � �i is less than a small, user-supplied parameter.

The extremizing curves of the constrained-area action

functional have been compared to periodic fieldlines of the

pseudo field, with good agreement. It has been confirmed

that both the radial location of the periodic fieldline on the

h ¼ 0 line and the numerical value of the action converge

with second order accuracy in h � 1=N, where N is the num-

ber of segments per 2p used in the piecewise-linear, piece-

wise-constant trial curves.

The algorithm for constructing the entire family of peri-

odic pseudo fieldlines that comprise the rational pseudo

surfaces proceeds as follows. It is particularly simple to find

the symmetric, true, periodic fieldlines because we may con-

strain h0 ¼ 0 and �¼ 0. Furthermore, these fieldlines are

identical to their reflections, i.e., hð�fÞ ¼ �hðfÞ, and the pe-

riodicity condition, hð2pqÞ ¼ 2pp, reduces to hðpqÞ ¼ pp,

which means that the pseudo fieldlines need only to be fol-

lowed “half-way around.”

The pseudo fieldline with h0 ¼ a serves as an initial

guess for the pseudo fieldline with h0 ¼ aþ da, and we may

trace out the entire pseudo surface by varying the poloidal

angle constraint. Note that given that the (p, q) pseudo field-

lines have length equal to 2pq, it is not required to construct

the pseudo curves over the range a 2 ½0; 2p�: periodicity

means that it is only required to construct the curves over the

range a 2 ½0; 2p=q�.

B. Greene’s residue

It is possible22 to calculate Greene’s residue21 using

the Lagrangian formulation. The residue is a measure of

the stability of a given fieldline and is determined by

the behavior of nearby fieldlines, hi þ dhi, which are

themselves determined by the tangent dynamics,

defined by the derivatives of the equations of motion in

Eq. (34)

@21Si dhi�1 þ ð@22Si þ @11Siþ1Þ dhi þ @12Siþ1 dhiþ1 ¼ 0:
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The multipliers, k, are defined22 by a tangent fieldline that

grows exponentially, dhiþq ¼ k dhi, and thus satisfiesP
j Mi;j dhj ¼ 0, where

MðkÞ �

a1 b1 k�1 bq

b1 a2 b2

: : :
bq�2 aq�1 bq�1

k bq bq�1 aq

0
BBBBB@

1
CCCCCA; (37)

and ai � @22Si�1 þ @11Si and bi � @12Si. The residue of a

periodic fieldline is given by22

R ¼ � 1

4
DP�1; (38)

where P �
Qq

1ð�biÞ, and D � jMð1Þj is the determinant of

M(1) and is given by

D ¼ aqjD1
q�1j � b2

qjD2
q�1j � b2

q�1jD1
q�2j � 2P;

where jDi
jj is the determinant of

Di
j �

ai bi

bi aiþ1 biþ1

: : : bj�1

bj�1 aj

0
BB@

1
CCA; (39)

which is tridiagonal, and so jDi
jj is easily computed using a

recurrence relation

jDi
jj ¼ ajjDi

j�1j � b2
j�1jD

i
j�2j: (40)

It has been confirmed that the residue as computed by

Eq. (38) converges with first order accuracy to that given by

Eq. (13).

At this point, it is worth describing another algorithm

for constructing the family of periodic pseudo fieldlines that

comprise the rational pseudo surface. With the piecewise-

linear representation for the periodic angle-curves, the area

defined by Eq. (18) is

a ¼
Xq�1

i¼0

hi þ pp

" #
Df� 2pp pq: (41)

Rather than introducing a Lagrange multiplier to enforce the

area constraint, the area constraint can be enforced directly

by re-writing this equation in the form hq�1 �
hq�1ðh0;…; hq�2; aÞ and replacing hq�1 as a independent

degree of freedom by a. Then, the constrained-area action in-

tegral depends on h � fhi : i ¼ 0; q� 2g and a, i.e.,

F � Fðh; aÞ. A curve is an extremum of the constrained-area

action integral when Dðh; aÞ � rhFðh; aÞ ¼ 0. The family

of pseudo curves that comprises the pseudo surface may be

constructed by varying a, which effectively shifts the

extremal curve poloidally. For the curve to remain an

extremum of F � Fðh; aÞ when a is varied, the curve must

vary in order to satisfy Dðhþ dh; aþ daÞ ¼ 0. This gives

the poloidal integration equation

dh

da
¼ � rhDð Þ�1 � @aD: (42)

Given one pseudo curve that lies on the pseudo surface, the

entire family of pseudo curves can be traced out by integrat-

ing Eq. (42) around poloidally.

VI. APPLICATION TO LHD

We now consider a magnetic field of experimental inter-

est. The LHD12 is a 10-field period heliotron in operation at

the National Institute for Fusion Science in Japan. LHD was

designed to have nearly integrable magnetic fields, particu-

larly near the magnetic axis; however, the magnetic field

becomes chaotic near the plasma edge where low-order mag-

netic islands overlap. The magnetic fields consistent with

finite-pressure, magnetohydrodynamic equilibria in LHD are

routinely calculated using the HINT code33 and its successor

the HINT2 code.34 In this work, for simplicity, we consider

the magnetic field that is produced by current carrying coils

external to the plasma domain as calculated by the Biot-

Savart formula.

Shown in Fig. 1 is a Poincar�e plot in cylindrical coordi-

nates of the “standard” configuration. The rotational-

transform varies from i- � 0:37 on axis to i- � 2:00 near the

edge. Suitable initial toroidal coordinates are

R ¼ 3:7þ 0:5q1=2 cosðhÞ � 0:15q1=2 cosðh� 10 fÞ;
Z ¼ �0:5q1=2 sinðhÞ � 0:15q1=2 sinðh� 10 fÞ:

A. “Low resolution” chaotic coordinates

Using these initial toroidal coordinates, a selection of

low-order QFM surfaces was constructed using the pseudo

fieldline integration method. The selected periodicities are

(p, q) ¼ (10, 25), (10, 24), (10, 23), … (10, 7), (10, 6). These

are shown as black lines in the lower half of Fig. 1.

By using these QFM surfaces as coordinate surfaces and

introducing the straight pseudo fieldline angle, we can con-

struct a new set of toroidal coordinates that can be thought of

as straight-fieldline coordinates for an assumed, nearby, inte-

grable field. The same Poincar�e plot as in Fig. 1 is shown in

the new coordinates in Fig. 2, except that only the region

near the plasma edge between the (10, 7) and the (10, 5)

islands is shown; the (10, 7) and (10, 6) islands are easy to

identify, but the (10, 5) island chain is in a region of strong

chaos and the (10, 5) separatrix is difficult to identify. An

approximation to the separatrices of the (10, 7), the (20, 13)

and the (10, 6) island chains as given by Eq. (23) is shown.

Recall that the construction of chaotic coordinates

depends on the selection of rational QFM surfaces that form

the coordinate framework; the coordinates formed by this

selection of periodicities will be referred to as “low-

resolution” chaotic coordinates. In this example, the QFM

surfaces passing through the (10, 7) and (10, 6) have been

used as part of the coordinate framework, and so these surfa-

ces appear as flat lines in Fig. 2, as also would the (10, 8),

(10, 9)…(10, 25) surfaces if the range of the figure was

extended towards the magnetic axis; whereas the (20, 13)
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QFM surface has not, and so the surface passing through the

(20, 13) is not flat.

In these same, low-resolution coordinates, the

constrained-area, action-extremizing method is used to con-

struct various high-order periodic fieldlines that approximate

either selected “intact” KAM surfaces or “broken,” near-

critical cantori. The selected periodicities are given by (p, q)

¼ (1230, 827), (1440, 953), (1440, 919), (1230, 772), (1230,

704), (1440, 809), (1310, 710), (1440, 775), (1230, 649), and

(850, 443), which approximate various noble irrationals.

These periodic approximations to the irrational sets are

shown as black dots in Fig. 2. The QFM surfaces that pass

through these high-order rationals are not used as coordinate

surfaces—an illustration of high-resolution chaotic coordi-

nates is shown later—so these KAM surfaces and cantori do

not coincide with coordinate surfaces and do not appear flat

in Fig. 2.

A close examination of these high-order periodic orbits

shows that some appear as closed curves in Fig. 2, as the fi-

nite number of dots are so close together, and some appear to

have gaps. The former are good approximations to the KAM

surfaces, which are perfect barriers, and the latter approxi-

mate the near-critical cantori, which are very strong, partial
barriers.

This intuitive description can be made precise by an

application of Greene’s residue criterion. Here, we use the

residue criterion to locate the outermost KAM surface, which

we call the boundary surface. The algorithm23,35 proceeds as

follows. An inspection of the Poincar�e plot, Fig. 2, suggests

that the boundary surface is between the ðp0; q0Þ � ð10; 6Þ
and the ðp1; q1Þ � ð10; 5Þ islands. Beginning from these

“parent” rationals, a Farey Tree is constructed by recursively

constructing the mediant ðp; qÞ � ðp0 þ p1; q0 þ q1Þ, which

divides the interval ½p0=q0; p1=q1� into two sub-intervals,

½p0=q0; p=q� and ½p=q; p1=q1�. If jRðp0; q0Þj þ jRðp; qÞj < 0:5,

where R(p, q) is the residue of the (p, q) periodic fieldline,

then it is likely that at least one intact KAM surface with

rotational-transform i- 2 ½p0=q0; p=q� exists. Because the

locally most-robust KAM surfaces have noble-irrational

rotational-transform, then if any irrational surfaces in this

region exists then it is likely that the i- ¼ ðp0 þ c pÞ=ðq0

þ c qÞ surface exists, where c ¼ ð1þ
ffiffiffi
5
p
Þ=2 is the golden

FIG. 1. Cylindrical coordinates: Poincar�e plot (grey dots) of LHD showing a

large volume of flux surfaces with some islands and chaos near the edge.

The QFM surfaces chosen as the coordinate skeleton are shown (black

lines).

FIG. 2. Low-resolution chaotic coordinates: Poincar�e plot (grey dots) show-

ing the edge region of LHD. The (10, 7), (10, 13), and (10, 6) QFM surfaces

are shown in red (only over one corresponding period of the island chain), as

are the island separatrices. Approximations to the irrational flux surfaces and

cantori are shown (black dots). The horizontal axis is the poloidal angle,

h 2 ½0; 2p�, and the vertical axis is the radial coordinate � toroidal flux.

102505-9 S. R. Hudson and Y. Suzuki Phys. Plasmas 21, 102505 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.35.1.205 On: Tue, 14 Oct 2014 13:22:51



mean. Similarly, if jRðp; qÞj þ jRðp1; q1Þj < 0:5, then it is

likely that the i- ¼ ðp1 þ c pÞ=ðq1 þ c qÞ surface exists. By

applying a recursive algorithm that examines the smaller and

smaller intervals defined by successive mediants, this algo-

rithm gives a very precise and definite approach for identify-

ing the boundary surface. For this case, the boundary surface

appears to be the i- � 1:895234 surface, and the residues for

the convergents of this irrational are shown in Fig. 3.

B. Anisotropic diffusion

To rigidly define the boundary surface as the “edge” of

a magnetically confined plasma may be misguided in the

study of confined plasmas. With infinite transport of temper-

ature and pressure parallel to the magnetic field, it will be

the case that the plasma boundary coincides with the bound-

ary surface; however, for slightly non-ideal plasmas with

small, but non-negligible, perpendicular transport, the near-

critical cantori that will inevitably persist both inside and

outside the boundary surface will provide barriers that may

be as significant as that of the intact KAM surfaces.

To make these statements more concrete, consider the

simple model of non-ideal transport described by the aniso-

tropic diffusion equation, jkrkT þ j?r?T ¼ 0, where

jk 	 j?. Assuming coordinates for which the temperature

is a surface function, T � TðwÞ, the steady-state temperature

gradient satisfies

T0 / ðjkuþ j?GÞ�1; (43)

where u is related to the quadratic flux and G is a geometric

quantity.36

For all almost-invariant surfaces with u < j?G=jk, the

temperature gradient is dominated by the perpendicular dif-

fusion, just as what is the case for the temperature gradient

across the invariant KAM surfaces. Not even the intact

KAM surfaces are complete barriers when the transport is

non-ideal; and there is hierarchy of partial barriers, both

inside and outside the boundary surface, each of which corre-

sponds to an almost-invariant surface. Furthermore, inside

the boundary surface there will invariably be significant

regions of poor confinement because of the presence of

islands and chaotic fieldlines in non-ideal plasmas.

To quantify the hierarchy of partial barriers, we con-

struct the “flux-Farey” tree,2 shown in Fig. 4, beginning

from the parent rationals (p, q) ¼ (10, 6) and (10, 7). The

flux, X � Wp=q where Wp=q is given by Eq. (24), across the

(10, 6) and (10, 7) parent rationals is largest; and as one

descends down the branches of this tree to the (20, 13), the

(30, 19), (30, 20) rationals, etc., the flux across the rational

surfaces typically decreases. If the flux approaches zero

along some path down the Farey tree, then a KAM surface

will exist; if not, the limiting value of X is the outward flux

across the remnant cantorus, and the magnitude of X indi-

cates the importance of that particular cantorus as a partial

barrier. Noble irrationals are those particular irrationals that

are obtained as limits of alternating paths down the Farey

tree, and typically these have lower fieldline flux.

That the QFM surfaces can be chosen to arbitrarily

closely approximate the KAM surfaces and the cantori37 is

of great practical importance because the KAM surfaces

present complete barriers to radial fieldline transport, and the

near-critical cantori are important partial barriers.38 By

choosing QFM surfaces with periodicities that approximate a

selection of noble irrationals, the coordinate surfaces of cha-

otic coordinates can be chosen to coincide with isotherms of

the anisotropic diffusion equation (this was demonstrated

numerically39 for the closely related40,41 almost-invariant

surfaces known as “ghost surfaces”19,42–44). With this being

the case, the approximation T � TðwÞ leading to the deriva-

tion of Eq. (43) becomes more accurate.

C. “High resolution” chaotic coordinates

The idea of action-angle coordinates, and their extension

to chaotic-coordinates, is to place all, or as much as is possi-

ble, of the geometric complexity of the dynamical system

into the coordinates; so that in action-angle coordinates the

dynamics appears simple, and in chaotic coordinates the dy-

namics appears as simple as possible.

FIG. 4. The flux Farey tree formed by the (10, 7) and (10, 6) parent ration-

als: the outward-flux, X � Wp=q, across surfaces passing through the islands

is shown against periodicity, (p, q).

FIG. 3. Greene’s residue for the rational convergents of the last closed flux

surface.
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Towards this aim, an additional set of higher-order

surfaces is constructed as follows: (Step 1) Beginning with

the low-resolution chaotic coordinates based on the (p, q) ¼
(10, 25), (10, 24), (10, 23), … (10, 7) and (10, 6) QFM surfa-

ces, the QFM surfaces with periodicities given by the first 6

levels of the Farey trees beginning from the parent rationals

(10, 8) and (10, 7), from the (10, 7) and (10, 6), and from the

(10, 6) and (10, 5) parent rationals are constructed. These

QFM surfaces are shown as black lines in Fig. 5. The

Poincar�e plot shown in Fig. 5 employs the low-resolution

chaotic coordinates described earlier, and is essentially iden-

tical to Fig. 2 except that the vertical range has been

extended slightly so that the (10, 8) island chain and separa-

trix (shown in red) can also be seen; recall that only the (10,

6), (10, 7), and (10, 8) QFM surfaces will appear flat in this

figure, as the high-order QFM surfaces included in the first 6

levels of the Farey trees have not yet been used as coordinate

surfaces.

(Step 2) Using these higher-order QFM surfaces as the

foundation of a new coordinate framework, “high-

resolution” chaotic coordinates can be constructed that are

adapted more closely to the fractal structure of the magnetic

field. The same Poincar�e plot as shown in the low-resolution

chaotic coordinates, namely, Figs. 2 and 5, is shown in the

high-resolution chaotic coordinates in Fig. 6. In this figure,

many high-order QFM surfaces are used in the coordinate

framework and so more of the flux surfaces appear straight.

Depending on how closely the selected QFM surfaces lie
outside the separatrices of the low-order islands, the islands

themselves become square.

The vertical range of this figure extends from the (10, 8)

QFM surface at the bottom to the (10, 5) QFM surface at the

top. The upper half the (10, 8)-separatrix can be seen, as can

the (10, 7), the (20, 13), the (10, 6), and the (20, 11) islands;

but the separatrix of the (10, 5) island at the top of the figure

cannot be clearly distinguished because this region of space

is so strongly chaotic that the separatrix structure is not appa-

rent. A close approximation to the boundary surface between

the (20, 11) and the (10, 5) islands is also visible.

In these high-resolution coordinates, we may expect that

the solutions to the anisotropic diffusion equation are

approximated by a smoothed, fractal staircase described by

Eq. (43); where the temperature gradients are locally maxi-

mum across the invariant and almost-invariant surfaces of

locally minimal flux (i.e., the noble irrationals), and the gra-

dients are reduced across the (rational) islands where u is

largest; and where the degree of smoothing is related to the

non-ideal, perpendicular diffusion. As j? ! 0, the tempera-

ture gradient adopts a fractal structure, with singularities

where the quadratic flux, u, is zero.

VII. CONCLUDING COMMENTS

This paper has described chaotic coordinates as an

extension of straight fieldline coordinates to non-integrable

fields. These coordinates are based on a selection of almost-

invariant, quadratic-flux minimizing surfaces that are labeled

by their periodicity and that form a radial framework. In the

limit as more rational surfaces are included, more of the

FIG. 6. High-resolution chaotic coordinates: Poincar�e plot (grey dots) of

LHD showing the edge region of LHD. The horizontal axis is the poloidal

angle, h 2 ½0; 2p�, and the vertical axis is the radial coordinate � toroidal

flux.

FIG. 5. Low-resolution chaotic coordinates: Poincar�e plot (grey dots) of

LHD showing the edge region. The (10, 8), (10, 7), (10, 13), and (10, 6)

QFM surfaces are shown in red, as are the island separatrices. High-order

QFM surfaces are shown (black lines). The horizontal axis is the poloidal

angle, h 2 ½0; 2p�, and the vertical axis is the radial coordinate � toroidal

flux.
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geometrical complexity of the dynamical system is absorbed

into the coordinates and both the rational (i.e., the Poincar�e-

Birkhoff periodic orbits) and the irrational (i.e., the KAM

surfaces and the cantori) fieldlines become straight, and it

then follows that the islands become square. Such coordi-

nates possibly have many applications, not only in the study

of magnetically confined plasmas but also in other areas of

physics that involve non-integrable Hamiltonian systems.

Single-particle trajectories in a strong magnetic field can be

described variationally,45 and Lagrangian integration meth-

ods have been applied to guiding center calculations by Qin

et al.46,47

The practical implementation of chaotic coordinates,

and the determination of the boundary surface and the quan-

tification of the strength of the hierarchy of partial barriers

associated with the cantori, depends on efficiently and

robustly constructing the periodic fieldlines and pseudo field-

lines that comprise the QFM surfaces. This paper has

described a particularly fast construction of the pseudo field-

lines as constrained extrema of the magnetic fieldline action.

This allows very high-order QFM surfaces to be constructed,

so that as much of the geometrical complexity of the chaos

can be absorbed into the coordinates as is possible; that is,

until the geometrical complexity requires an exorbitant cost

in numerical resolution and creates difficulties in the interpo-

lation and extrapolation of the QFM surfaces that is required

to construct smooth, global coordinates.

A. Robust interpolation and extrapolation

Regarding the numerics, there are two matters which

should be considered in more detail: the interpolation

between the QFM surfaces, and the extrapolation of the coor-

dinates beyond the outermost QFM surface.

In the above, a Fourier description of each surface was

constructed. This is itself is no problem as the surfaces are

smooth; however, the interpolation between the coordinates

is somewhat naive: the Fourier harmonics are interpolated by

piecewise quintic polynomials; unfortunately, this does not

guarantee that the interpolated surfaces do not intersect.

Interpolating between extremely deformed surfaces, such as

the high-order surfaces that lie just outside the separatrices

of low-order islands, can be problematic. A better interpola-

tion, perhaps, would be to use equipotential surfaces of the

solution to Laplace’s equation, r � rU ¼ 0, with boundary

condition U¼ 0 and U¼ 1 on the pair of adjacent QFM

surfaces to be interpolated, as these surfaces are guaranteed

to not intersect.

To extend the coordinates past the outermost con-

structed QFM surfaces, the present method extrapolates the

Fourier harmonics. Given that all confinement devices are

ultimately limited by a separatrix, and that the straight field-

line coordinates and their generalization to chaotic coordi-

nates becomes singular, extrapolating into a singularity is

unreliable. The nature of the singularity is understood: the

singularity of the separatrix is like that of a pendulum, and

so a more reliable extrapolation could exploit this in a fash-

ion that is similar to how the “polar” singularity at the coor-

dinate origin is treated (as described in the Appendix).

As a final comment, the discretization of the action inte-

gral in Sec. V allows for the numerical construction of ghost

surfaces,19 which are defined as an extension of ghost

circles42–44 to continuous time systems, and which are

closely related to QFM surfaces.19 Recently, a freedom in an

angle transformation has been exploited to obtain a unifica-

tion of these ostensibly different classes of almost-invariant

surfaces.40,48
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APPENDIX: CONSTRUCTION OF VECTOR POTENTIAL

We begin with the magnetic field given in cylindrical

coordinates

B � BReR þ B/e/ þ BZeZ; (A1)

where BR; B/, and BZ are functions of ðR;/; ZÞ. The coordi-

nate basis vectors are eR � @x=@R; e/ � @x=@/ and

eZ � @x=@Z, where x � R cos / iþ R sin / jþ Z k. An ini-

tial guess for magnetic coordinates, ðq; h; fÞ, which are

expressed via an inverse transformation

R � Rðq; h; fÞ
/ � f

Z � Zðq; h; fÞ:
(A2)

Magnetic coordinates are necessarily “toroidal,” by

which it is meant that q ¼ 0 coincides with the magnetic

axis, and h and f are angles that, respectively, increase by 2p
along curves that loop the short way and the long way around

the torus. Toroidal coordinates provide some computational

advantages, but also present difficulties because of the coor-

dinate singularity at q ¼ 0. To illustrate the nature of the sin-

gularity, it is convenient to define “Cartesian-like” and

“polar-like” coordinates via x � r cos h � Rðq; h; fÞ � R0ðfÞ
and y � r sin h � Zðq; h; fÞ � Z0ðfÞ, where (R0, Z0) is the

magnetic axis, and to assume that an arbitrary, magnetic vec-

tor potential may be written

A ¼ Axrxþ Ayryþ Afrfþrg; (A3)

where Axðx; y; fÞ; Ayðx; y; fÞ; Azðx; y; fÞ, and the as-yet-arbi-

trary gauge function, gðx; y; fÞ, are regular at x ¼ y ¼ 0, e.g.,

Ax ¼
P

i;j ai;jðfÞ xiyj, for small x and small y.

The expressions for Ax, Ay, Af, and g can be cast as func-

tions of ðr; h; fÞ by repeated applications of the double-angle

formula to obtain

Ax ¼
X

m
rmamðsÞ sinðmhÞ;

Ay ¼
X

m
rmbmðsÞ cosðmhÞ;

Af ¼
X

m
rmcmðsÞ cosðmhÞ;

g ¼
X

m
rmgmðsÞ cosðmhÞ;

(A4)
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where amðsÞ; bmðsÞ; cmðsÞ, and gmðsÞ are power series in

s � r2, e.g., amðsÞ �
P

i am;is
i, bmðsÞ �

P
i bm;is

i, cmðsÞ
�
P

i cm;is
i, and gmðsÞ �

P
i gm;is

i; and we have restricted

attention to stellarator-symmetric geometry and the depend-

ence on f is suppressed. A similar analysis is valid for the

coordinate functions defined in Eq. (A2), and regularity fac-

tors rm are included in both the coordinate transformation

and in the vector potential harmonics.

The Cartesian-to-polar transformation, x ¼ r cos h and

y ¼ r sin h, induces the vector transformation rx ¼ cos hrr
�r sin hrh and ry ¼ sin hrr þ r cos hrh, and

A ¼ Arrr þ Ahrhþ Afrfþ @rgrr þ @hgrhþ @fgrf:

(A5)

To lowest order in r, the radial component is

Ar ¼ r0ðb0;0 þ g1;0Þ sin hþ r1ða1;0=2þ b1;0=2þ 2g2;0Þ sin 2h

þ r2ða2;0=2þ b2;0=2þ 3g3;0Þ sin 3hþ � � � ;

which is eliminated by the gauge choice

g1;0 ¼ �b0;0;

g2;0 ¼ �ða1;0=2þ b1;0=2Þ=2;

g3;0 ¼ �ða2;0=2þ b2;0=2Þ=3:

(A6)

Order-by-order, Ar can be eliminated using the freedom in

the gm;i to obtain

A ¼ Ahrhþ Afrf: (A7)

The expressions for Ar and Ah are coupled, and the choice of

gauge in Eq. (A6) entails

Ah ¼
X

m
rmþ2fmðsÞ cosðmhÞ; (A8)

where the fmðsÞ are arbitrary polynomials in s. The gm;i for

m¼ 0 are not constrained by Eq. (A6); this remaining,

“toroidal” gauge-freedom can be used to simplify Af, so that

cm;i ¼ 0 for m¼ 0.

With the vector potential given by Eq. (A7), the equa-

tion B ¼ r� A reduces to

ffiffiffi
g
p

Bq ¼ @hAf � @fAh;
ffiffiffi
g
p

Bh ¼ �@qAf;
ffiffiffi
g
p

Bf ¼ @qAh:

(A9)

Given Bh and Bf, the components of the vector potential can

be determined by radially integrating outwards from the

coordinate axis, Ah;j ¼
Ð qð ffiffiffigp BfÞj dq and

Af;j ¼ �
Ð qð ffiffiffigp BhÞj dq, where j labels each Fourier har-

monic. The third equation in Eq. (A9) is satisfied if

@qð
ffiffiffi
g
p

BqÞ þ @hð
ffiffiffi
g
p

BhÞ þ @fð
ffiffiffi
g
p

BfÞ ¼ 0, i.e., if r � B ¼ 0.

Note that it is usually quite easy to locate the magnetic axis

given the field in cylindrical coordinates by finding the mag-

netic fieldline that closes upon itself after one toroidal pe-

riod; however, this might become complicated if two

magnetic axes are present, such as what might be the case in

applications modeling sawteeth, for example.

A simple approach for constructing a convenient numeri-

cal representation is to construct Ah and Af on a regular radial

grid by radial integration, i.e., to obtain Ahðqi; h; fÞ �P
j Ah;j;i cosðmh� nfÞ and similarly for Af, where qi � iDq.

Then, the Fourier components, Ah;j;i and Af;j;i can be radially

interpolated, by a piecewise-cubic interpolation for example,

where the derivatives are determined using finite-differences,

e.g., @qAh;j;i � ðAh;j;iþ1 � Ah;j;i�1Þ=2Dq.

However, given that what really is required is that the

appropriate derivatives of the vector potential match the mag-

netic field as closely as possible at finite numerical resolution,

a more accurate interpolation and more efficient radial-

integration construction is possible. Consider the interpolation

f ðqÞ ¼
P

kf kukð�qÞ, where the fk are fitting parameters and

the ukð�qÞ are the piecewise quintic polynomials, and the local

domain of the interpolation is �q � ðq� qiÞ=Dq for

q 2 ½qi�1; qi�. We require f 0ðqÞ ¼ yðqÞ, where f � Ah;j and

y � ð ffiffiffigp BfÞj, and similarly for Af;j and
ffiffiffi
g
p

Bh. By choosing a

set of points, q, in ½qi�1; qi�, the fitting parameters are deter-

mined by a matrix equation
P

kf ku0kðqÞ ¼ yðqÞ. This ensures

that the radial derivative equations in Eq. (A9) are satisfied

exactly on the q. We have chosen a piecewise quintic interpo-

lation for the Fourier harmonics of A because both the pseudo

fieldline integration and the constrained-area action minimiz-

ing methods for locating periodic pseudo-fieldlines exploit the

derivatives of the field, and is it preferable to have a smooth

representation for B.
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